17 research outputs found

    Fast-RAT Scheduling in a 5G Multi-RAT Scenario

    Get PDF
    The authors exploit a Fast RAT switch solution to improve QoS metrics of the system by means of efficient RAT scheduling. Analyses presented here show a better understanding concerning which system measurements are most efficient in a mutliple-RAT scenario. More specifically, they present an analysis concerning the metrics that should be used as RAT scheduling criteria and how frequent these switching evaluations should be done

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    Hexa-X the European 6G Flagship Project

    Get PDF
    Hexa-X will pave the way to the next generation of wireless networks (Hexa) by explorative research (X). The Hexa-X vision is to connect human, physical, and digital worlds with a fabric of sixth generation (6G) key enablers. The vision is driven by the ambition to contribute to objectives of growth, global sustainability, trustworthiness, and digital inclusion. Key 6G value indicators and use cases are defined against the background of technology push, society and industry pull as well as objectives of technology sovereignty. Key areas of research have been formulated accordingly to include connecting intelligence, network of networks, sustainability, global service coverage, extreme experience, and trustworthiness. Critical technology enablers for 6G are developed in the project including, sub-THz transceiver technologies, accurate stand-alone positioning and radio-based imaging, improved radio performance, artificial intelligence (AI) / machine learning (ML) inspired radio access network (RAN) technologies, future network architectures and special purpose solutions including future ultra-reliable low-latency communication (URLLC) schemes. Besides technology enablers, early trials will be carried out to help assess viability and performance aspects of the key technology enablers. The 6G Hexa-X project is integral part of European and global research effort to help define the best possible next generation of networks

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    The 6G Architecture Landscape:European Perspective

    Get PDF

    Study of the Preparation of Mesoporous Magnetic Microspheres and Their Applications

    No full text
       Treatment of wastewater using magnetic technology is a rising field. In this thesis, the latest research on the subject is reviewed and several adsorbents with different coatings, which impart them unique properties, are discussed. Separation of particles from aqueous solution using magnetic technology is more convenient compared to conventional techniques, such as filtration and centrifugation. The adsorbents described in this thesis are effective for adsorption of several types of contaminants, such as heavy metals and different types of dyes.    Magnetic microspheres were synthesised using porous polystyrene microspheres as template. The microspheres were first sulfonated using chlorosulfonic acid followed by stirring in the presence of ferrous chloride which then was oxidised and magnetic nanoparticles were formed on the surface.    The sulfonated microspheres had a surface area of 420 m2/g and the magnetic 175 m2/g, indicative of Fe3O4 nanoparticles were successfully formed in the pores. The weight fraction of the Fe3O4 nanoparticles in the magnetic microspheres was 33 %.    Adsorption and desorption studies of the cationic dye, methylene blue, using mesoporous magnetic microspheres were performed. The results show that the mesoporous magnetic microspheres have good ability to adsorb methylene blue at low concentrations. In a cycle study the adsorption efficiency were nearly 100 % throughout the study. Using a 6/4 EtOH/H2O with saturated KCl solution the desorption efficiency in the cycle study were about 95 %.      The microspheres were used as carriers for TiO2 in order to overcome the problem with the separation of TiO2 from solution. The TGA results show that the microspheres contained about 12 % of TiO2. The TiO2 coated microspheres were used for the photocatalytic degradation of phenol. However, the TiO2 microspheres did not work. This was a result from that the phenol had too little contact with the TiO2. A possible way of solving this problem could be to decrease the size of the microspheres, thus increase the surface area.    Lysozyme was adsorbed and separated using the porous microspheres. The lysozyme adsorption worked best at pH 9.6, which is the pI for lysozyme. The lysozyme could be extracted from the microspheres by using a pH 13 buffer. Also, by using MeOH/H2O and EtOH/H2O solutions with saturated KCl the lysozyme could be desorbed. An adsorption and desorption mechanism was also presented.   Vattenrening med magnetisk teknologi är en ny och alltmer uppmärksammad teknik. Magnetisk separation är ett enkelt och snabbt sätt att separera något från en lösning. Magnetisk separation är mer lätthanterligt jämfört med traditionell separationsteknik såsom centrifugering och filtrering.  Med porösa polystyren mikrosfärer som mall, syntetiserades magnetiska mikrosfärer. Först så sulfonerades mikrosfärerna med klorosulfonisk syra, följt av att de rördes om i en järnkloridlösning. Magnetiska nanopartiklar bildades i porerna och på ytan av mikrosfärerna.    Sulfonerade mikrosfärerna hade en specifik ytarea på 420 m2/g och de magnetiska 175 m2/g, detta indikerar att Fe3O4-nanopartiklar bildades på ytan och i porerna. Massfraktionen av Fe3O4 var 33 %.    Adsorption- och desorptionsstudier på de magnetiska mikrosfärerna utfördes. Färgämnet metylblått användes i studien. Resultaten visade att magnetiska mikrosfärerna hade en bra adsorptionsförmåga vid låga koncentrationer av metylblått. Cykelstudier visade att adsorptionsverkningsgraden var nära 100 % under flera adsorptionscykler. Desorptionsförsök med olika lösningsmedel visade att en mättad KCl 6/4 EtOH/H2O lösning gav en desorptions-verkningsgrad på ca 95 %.   Mikrosfärerna användes som mall och kärna för att syntetisera en TiO2-fotokatalysator, detta för att överkomma problemet som finns med separation av rent TiO2 pulver från lösning. TGA resultaten visade att mikrosfärerna innehöll ca 12 % TiO2. De syntetiserade TiO2-mikrosfärerna användes till att bryta ner fenol fotokatalytiskt. Dock fungerade inte detta experiment. En anledning var att fenolen hade för lite kontakt med TiO2. En lösning på detta problem är att använda mikrosfärer med högre specifik ytarea.    Proteinet lysozym användes som modellprotein för försök att separera proteiner från lösning genom att använda porösa mikrosfärer. Resultatet visade att lysozym kunde adsorberas vid pH 9.6. Med en pH 13 buffer kunde lysozymet sedan extraheras från mikrosfärerna. En mekanism för adsorptionen och desorptionen på mikrosfärerna presenterades

    Energy efficient multi-connectivity algorithms for ultra-dense 5G networks

    No full text
    Two radio air interfaces, Evolved-LTE and New Radio, coexist in new 5G systems. New Radio operates in the millimeter band and provides a better bandwidth, but the higher frequencies also imply worse radio conditions. Multi-connectivity, a feature of 5G that allows users to connect to more than one base station simultaneously, can offer the advantages of both interfaces. In this paper, we investigate how multi-connectivity can improve user reliability and the system’s energy efficiency. Five algorithms for secondary cell association are presented and evaluated. We show a decrease in the radio link failure rate of up to 50% at high speeds and improvements of the energy efficiency of up to 20% at low speeds.Validerad;2020;Nivå 2;2020-05-08 (johcin)</p

    User Performance in a 5G Multi-connectivity Ultra-Dense Network City Scenario

    No full text
    Multi-connectivity and network densification are two solutions intended to improve performance and reliability. These solutions can improve 5G NR’s system performance especially when using high-frequency bands. This work focuses on the user equipment (UE) performance using multi-connectivity within an ultra-dense deployment in a city environment. By being connected to more than one access node simultaneously, the UE should benefit from increased reliability and performance. However, this improved performance comes at the expense of a potentially increased power consumption. Simulation results show that multi-connectivity improves performance by up to 46% and 27% in downlink and uplink resp., increases UE energy efficiency by up to 30% and improves reliability for highly mobile users by up to 37%. The price to pay is an increased UE power consumption of up to 25% and 60% for dual-connectivity and tri-connectivity resp. A multi-connectivity scheme is presented to reduce the secondary connection’s transmit power.Finansiär: European UnionISBN för värdpublikation: 978-1-7281-7158-6</p

    Evaluation of quality of experience in interactive 3D visualization: methodology and results

    No full text
    Human factors are of high importance in 3D visualization, but subjective evaluation of 3D displays is not easy because of a high variability among users. This study aimed to evaluate and compare two different 3D visualization systems (a market stereoscopic display, and a state-of-the-art multi-view display) in terms of task performance and quality of experience (QoE), in the context of interactive visualization. An adapted methodology has been designed in order to focus on 3D differences and to reduce the influence of all other factors. 36 subjects took part in an experiment during which they were asked to solve different tasks in a synthetic 3D scene. After the experiment, they were asked to judge the quality of their experience, according to specific features. Results showed that scene understanding and precision was significantly better on the multi-view display. Concerning the quality of experience, visual comfort was judged significantly better on the multi-view display and visual fatigue was reported by 52% of the subjects on the stereoscopic display. This study has permitted to identify some factors influencing QoE such as prior experience and stereopsis threshold
    corecore